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Introduction

• Many engine power-loss events reported since the 1990’s

• Ice crystals entering the engine core – Mason et al.

• Ingestion of ice into engine studied at NASA PSL and elsewhere

• Observed environmental conditions changed with cloud activation

– Gas temperature change

– Humidity change

• Hypothesis: Thermal interaction between air and cloud

• Building on previously written model to simulate PSL

• Objective: Understand the air - cloud interactions in PSL tunnel
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General Description of Model

• Model Simulates PSL icing tunnel
– Air and cloud conservation equations (mass, energy) fully coupled 

– Air is treated as ideal compressible gas

– Isentropic equations used to solve 𝜌air, vair, Tair, P 

– Air and particle flow are steady and one dimensional

– Temperature is uniform within the perfectly spherical particle

– Full particle size distributions used
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PSL Geometry and Capabilities

Tunnel Controllability

• ±0.3 kPa (.05 psia)

• ± 0.5 OC (1 OF)

• ± 1% RH
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Tunnel Capability

• Freeze out liquid cloud

• 12 parameters can be varied

– P, V, Tair, Twater, RH, MVD, TWC, 

Water Type, Nozzle Pattern…

(Subscripts 0,i) (Subscripts s,e)
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Supersaturation and Condensation

• Vapor saturation can be exceed for certain conditions

• Condense on cloud particles through diffusion not sufficient

• Supersaturated? Condense? Combination?

• 2 type of condensation

– Homogeneous  - RH >> 100% (very clean air)

– Heterogeneous - RH >100% (nucleation / seeding)

• Nature ~ 101% RH
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RHs = 76%

U = 3 m/s

RHs = 127%
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Condensation Cloud Experiments
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Cond# 101      Spray Off RH0,i = 54 %     RHs,e,calc = 90 % Cond# 102   Spray Off  RH0,i = 64 %  RHs,e,calc = 107 %

Cond# 103     Spray Off   RH0,i = 76 %   RHs,e,calc = 127 % Cond# 105     Spray On   RH0,i = 77 %  RHs,e,calc = 128 %

A B

C D
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Aerosol Particulates Background

• Organic and inorganic in composition

• Size distribution from 0.003 µm to 2.5 µm

• # density variations

– 3,100/cm3 (Alps)

– 100,00/cm3 (city background)

– Diurnal variation (peak traffic hours)

– Seasonal variation (heating in winter)

• Aerosol particulates considered in condensation
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Aerosol Condensation Subroutine 

• Implemented only when RH>100%

• Treat aerosol like any other water droplet / ice particle

• Initial # Density: 22,000/cm3 (Pittsburg, PA paper)

• Initial Size: 0.04 µm (Pittsburg, PA paper)

• Initial Velocity: 99.99% of air velocity

• Initial Temperature: Twb

• Twb > 0 OC : Condense as liquid

• Twb <= 0 OC : Deposit as ice

• Effects of charged particles neglected 
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Model Formulation - Algorithm

• Written in MATLAB version R2016b

• Solves conservation differential equations using built-in ODE45 solver

• Numerical relative and absolute convergence tolerance of 10 -8

• Mass transferred between the gas and particle(s) balanced to 10 -15

• Energy transferred between the gas and particle(s) balanced to 10 -4

– Physical accuracy dependent on accuracy of property values (Cp, 

Lheat, etc.)
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Supersaturation Simulation Profiles
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Test Conditions

T0,i = 10.0 0C Ue = 135 m/s

P0,i = 78.2 kPa MVDi = 15 µm

RH0,i = 77% TWCi = 7.1 g/m3

Spray On   RH0,i = 77 %  RHs,e,calc = 128 %

D



National Aeronautics and Space Administration

www.nasa.gov

Supersaturation Simulation Comparisons
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1 2 3 4 5 6 7 8 9 10 11

Cond Spray T0,i Ts,e,calc RH0,i RHs,e,calc 𝜔100%RH 𝜔i,exp 𝜔e,exp 𝜔e,sim,none 𝜔e,sim,aero

# On/Off OC OC % % g/kg g/kg g/kg g/kg g/kg

102 Off 10.9 1.8 64 107 5.61 6.01 5.99 6.01 6.00

103 Off 10.1 1.1 76 127 5.34 6.87 6.35 6.87 6.79

105 On 10.0 1.0 77 128 5.30 6.81 6.42 7.15 6.94

Cond # 102 Cond # 103 Cond # 105

B C D

(𝜔= mass mixing ratio)
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Experiment Configurations
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Tomography – Icing Cloud Spread
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Experimental Test Conditions for 4 RH Sweeps 

• Varied Parameters

– RH0,i = 0% to 60%

– MVDi = 15 µm or 50 µm

– Ue = 85 m/s and 135 m/s

• Constant Parameters

– T0,i = 7.2 0C

– P0,i = 44.6 kPa

– TWCi = 7.0 g/m3

• Twb Ranges

– Twb0,i =  -6.9 OC  (0% RH) 

– Twb0,i = +2.4 OC  (60% RH) 
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Plenum RH Sweeps - ΔHumidity
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Plenum RH Sweeps - ΔTair
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Plenum RH Sweeps - ΔTwb
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Plenum RH Sweeps – Melt Fraction

19



National Aeronautics and Space Administration

www.nasa.gov

Plenum RH Sweeps - TWC

20



National Aeronautics and Space Administration

www.nasa.gov

Plenum RH Sweeps - MVD
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Summary

• Model written to understand  Air - Cloud interactions in PSL

• Aerosol Condensation implemented for better accuracy

• Model over-predicts amount of evaporation (ΔTair, Δ Hum)

– Correct trend for varying RH

• Smaller Twb changes, important to determine cloud phase

• Good agreement for melt ratio 

• TWC and MVD comparisons suggest 2D effects

• 1D model will not capture 2D cloud movement

• Provides useful predictions even as 1D

– Model guided development of test matrix for fundamental ICI tests
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Simulation Results – Aerosol Parametric Analysis
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Test Conditions

T0,i = 10.0 0C Ue = 135 m/s

P0,i = 78.2 kPa MVDi = 15 µm

RH0,i = 77% TWCi = 7.1 g/m3

Aerosol Parameters

# Density = 22,000/cm3 Initial Size = 0.04 µm


